Cut Detection in Wireless Sensor Networks
ABSTRACT:
A wireless sensor network can get separated into multiple connected
components due to the failure of some of its nodes,which is called a “cut”. In
this article we consider the problem of detecting cuts by the remaining nodes
of a wireless sensor network.We propose an algorithm that allows (i) every node
to detect when the connectivity to a specially designated node has been
lost,and (ii) one or more nodes (that are connected to the special node after
the cut) to detect the occurrence of the cut. The algorithm is distributed and
asynchronous: every node needs to communicate with only those nodes that are
within its communication range. The algorithm is based on the iterative
computation of a fictitious “electrical potential” of the nodes. The
convergence rate of the underlying iterative scheme is independent of the size
and structure of the network.
EXISTING SYSTEM
Wireless Multimedia Sensor Networks (WMSNs)
has many challenges such as nature of wireless media and multimedia information
transmission. Consequently traditional mechanisms for network layers are no
longer acceptable or applicable for these networks. Wireless sensor network can get separated into multiple connected
components due to the failure of some of its nodes, which is called a “cut”.
Existing cut detection system deployed only for wired networks.
DISADVANTAGES OF EXISTING SYSTEMS:
1.
Unsuitable for dynamic network reconfiguration.
2.
Single path routing approach.
PROPOSED SYSTEM
Wireless sensor networks (WSNs) are a
promising technology for monitoring large regions at high spatial and temporal
resolution .Failure of a set of nodes will reduce the number of multi-hop paths
in the network. Such failures can cause a subset of nodes – that have not
failed – to become disconnected from the rest, resulting in a “cut”. Two nodes
are said to be disconnected if there is no path between them. We consider the
problem of detecting cuts by the nodes of a wireless network. We assume that
there is a specially designated node in the network, which we call the source
nodeSince a cut may or may not separate a node from the source node, we
distinguish between two distinct outcomes of a cut for a particular node. When
a node u is disconnected from the source, we say that
a DOS (Disconnected frOm Source) event has occurred for u. When a cut occurs in the network that does
not separate a node u from the source node, we say that CCOS (Connected, but a Cut Occurred
Somewhere) event has occurred for u. By cut detection we mean (i) detection by each node of a DOS event
when it occurs, and (ii) detection of CCOS events by the nodes close to a cut,
and the approximate location of the cut. In this article we propose a
distributed algorithm to detect cuts, named the Distributed Cut Detection (DCD)
algorithm. The algorithm allows each node to detect DOS events and a subset of
nodes to detect CCOS events. The algorithm we propose is distributed and
asynchronous: it involves only local communication between neighboring nodes,
and is robust to temporary communication failure between node pairs The
convergence rate of the computation is independent of the size and structure of
the network.
MODULES:
·
DISTRIBUTED
CUT DETECTION
·
CUT
·
SOURCE
NODE
·
CCOS AND
DOS
·
NETWORK
SEPERATION
MODULE DESCRIPTION:
DISTRIBUTED CUT DETECTION:
The algorithm allows each node to detect DOS
events and a subset of nodes to detect CCOS events. The algorithm we propose is
distributed and asynchronous: it involves only local communication between
neighboring nodes, and is robust to temporary communication failure between
node pairs. A key component of the DCD algorithm is a distributed iterative
computational step through which the nodes compute their (fictitious)
electrical potentials. The convergence rate of the computation is independent
of the size and structure of the network.
CUT:
Wireless sensor networks (WSNs) are a promising
technology for monitoring large regions
at high spatial and temporal resolution.In fact, node failure is expected to be
quite common due to the typically limited energy budget of the nodes that are
powered by small batteries. Failure of a set of nodes will reduce the number of
multi-hop paths in the network. Such failures can cause a subset of nodes –
that have not failed – to become disconnected from the rest, resulting in a
“cut”. Two nodes are said to be disconnected if there is no path between them.
SOURCE
NODE:
We consider the
problem of detecting cuts by the nodes of a wireless network. We assume that
there is a specially designated node in the network, which we call the source
node. The source node may be a base station that serves as an interface
between the network and its users.Since a cut may or may not separate a node
from the source node, we distinguish between two distinct outcomes of a cut for
a particular node.
CCOS
AND DOS:
When a node u is disconnected from the source, we say that
a DOS (Disconnected frOm Source) event has occurred for u. When a cut occurs in the network that does
not separate a node u from the source node, we say that CCOS (Connected, but a Cut Occurred
Somewhere) event has occurred for u. By cut detection we mean (i) detection by each node of a DOS event
when it occurs, and (ii) detection of CCOS events by the nodes close to a cut,
and the approximate location of the cut.
NETWORK SEPERATION:
Failure of a set of
nodes will reduce the number of multi-hop paths in the network. Such failures
can cause a subset of nodes – that have not failed – to become disconnected
from the rest, resulting in a “cut”. Because of cut, some nodes may separated
from the network, that results the separated nodes can’t receive the data from
the source node.
SYSTEM REQUIREMENTS:
HARDWARE REQUIREMENTS:
•
System
: Pentium IV 2.4 GHz.
•
Hard Disk
: 40 GB.
•
Floppy Drive :
1.44 Mb.
•
Monitor :
15 VGA Colour.
•
Mouse :
Logitech.
•
Ram :
512 Mb.
SOFTWARE REQUIREMENTS:
•
Operating
system : - Windows XP.
•
Coding
Language :
JAVA
REFERENCE:
Prabir
Barooah, Member, IEEE, Harshavardhan Chenji, Student Member, IEEE,
Radu Stoleru,
Member, IEEE, and Tama´s Kalma´r-Nagy, “Cut Detection in Wireless Sensor
Networks”, IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, VOL. 23, NO. 3, MARCH 2012